Matrices

Let $ m$ ,$ n$ be natural numbers. An $ m \times n$ matrix is a rectangular scheme of numbers, which are arranged in $ m$ rows and $ n$ columns:

$\displaystyle \begin{bmatrix}a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_...
...& \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$    

The numbers $ a_{ij}$ , where $ 1 \leq i \leq m, 1 \leq j \leq n$ , are called elements or entries of the matrix. In this notation, $ i$ is called the row index and $ j$ the column index. In general, this matrix is briefly referred to as $ A$ , or alternatively as $ a_{ij}$ . Essentially, MATLAB only knows one calculation unit, namely an $ m \times n$ matrix. In MATLAB, a scalar is interpreted as a $ 1 \times 1$ matrix.



Previous      Next      Up      Contents


Subsections

Esteur 2010-03-22