Exercise 4.16

Consider matrix $ A$ , vector $ b$ and the system of linear equations $ Ax = b$ :

$\displaystyle A = \begin{bmatrix}1 & 2 & 3 \\ 2 & -3 & 2 \end{bmatrix}, \quad b = \begin{bmatrix}-4 \\ 4\end{bmatrix}$    

a)
Solve the system of linear equations using the command A $ \backslash$ b. Is there a unique solution?
b)
Determine all possible solutions using the command rref
c)
Make the symbolic matrices AA = sym(A) and bb = sym(b) and solve the linear system symbolically using the command AA\bb.



Previous      Next      Up      Answer


Esteur 2010-03-22